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ABSTRACT

The simulation of the kinetic equations for the AGN-201 reactor

was programmed on the Donner Model 3100 analog computer. The accuracy

of the simulation was verified by comparison with both a digital computer

solution of the kinetic equations and with the measured time response of

the AGN-201 reactor. A discontinuous (on-off) type automatic flux control

system was designed and placed in closed loop operation with the simulated

reactor. The sensitivity of the control system was adjusted to obtain the

specified performance. The control system was then installed on the AGN-=

201 and the accuracy of this design technique was verified by time re-

sponse measurements. The control system proved to be a simple,, effec-

tive device capable of maintaining the power (flux) level of the reactor

within i 3% of the desired level at all levels of reactor operation be-

tween 0.01 and 200 watts.
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1. Introduction.

The AGN-201 reactor is a low power reactor which was produced in

quantity by Aerojet-General Nucleonics for use in education;, research,

medical diagnosis, and industrial process control 7 . The 25 by 25 cm.

cylindrical core is constructed of discs of a homogeneous mixture of

235
polyethylene moderator and U0

7 , which is 20% enriched in U "

. The

235
critical mass is 656 grams of U dispursed in approximately 11 Kg. of

polyethylene. Control of the reactor is accomplished by four fuel- loaded

control rods, two act as safety rods
9
and two operate as control rods.

The original licensed power was 0.1 watt but shielding modifications now

permit the reactor at the U. S. Naval Postgraduate School to operate at

10 2
1000 watts. At this power, a maximum flux of about 5 x 10 n/cm -sec.

is available in a "glory hole" which penetrates the core to its center.

The reactor is used by the Postgraduate School for a variety of

purposes. One of the largest uses is for the neutron activation of vari-

ous chemical elements. This operation involves the maintenance of a

steady power level for extended periods of time. An automatic system

capable of maintaining the neutron flux (reactor power) at a preset level

would reduce operator fatigue and free him from the simple task of man-

ipulating a switch to keep a meter reading constant. This automatic opera-

tion would permit him to observe more closely the overall behavior of the

reactor. The objective of this thesis work was to design such a control

system. The approach to the design was to investigate the time behavior

of the AGN-201, simulate that time behavior on an analog computer and use

the analog simulation as an experimental tool in the design of the control

system.





The specifications for the automatic flux control system here-

after abbreviated as the AFC system,, were established as follows;

1. The system will be capable of maintaining stable opera-

tion at any desired flux (power) level between 0.01 watts

and 200 watts

.

2. Accuracy of control will be within Jk 1% of a set power

level.

3. The neutron detection systems and control and safety

circuits of the reactor will not be disturbed or changed

by the AFC system,

4. Control of the reactor will be effected by using the ex-

isting control rod actuators and the rates of travel of

the rods will not be changed. This specification stems

from an agreement with the Atomic Energy Commission ri

garding the proposed AFC system.

5. Override of the AFC system will be possible by manipulat-

ing the manual controls of the reactor.

6. The AFC system will be made as safe as possible against

failure of its components. That is,, failure of a vacuum

tube or relay will not cause insertion of positive re-

activity into the reactor.





2. Type of System and Design Methods Used,

The control problem may be explained by reference to Fig,

Section 5 for a detailed description of the AFC system.

See

i

I

COWTROL

ROD ACTUATOR

Tft,

I

.QQMT&QL-L.e'S J

REACTOR

(c/A/er/cs,

n -*«=

Fig. 1 Block Diagram of the Control Problem.

]

It is the function of the AFC system to compare the reactor neutron density

n, with a reference level a n . If an error is found to exist 8 the system

will initiate control rod action so that rod react ivity a ok 8 is changed

in the proper direction to bring the error to zero. The possibility ex-

ists for a reactivity disturbance,, oL s ^° be introduced during the
D

performance of an experiment on the reactor. Regardless of the inter-

action of bk and ok , the actuator must be designed to reduce the
R L

error as long as an error exists.

The system specifications described above indicate the desirability

of using a discontinuous s
on-off

8
type control system. Specification 4

Neutron density , flux and power will be used interchangeably In

this report.





is particularly restricting. In order to use a continuous controller

we must have the capability of varying the corrective action,, As applied

to the AGN-201, this means variable rod speed. Without this capability
s

our choice is limited to a form of discontinuous controller which can

perform in a satisfactory manner using fixed control rod speed. Actual-

ly, each control rod on the AGN has two speeds but this is not enough

flexibility for a continuous control system. A continuous controller

provides continuous corrective action
[4J

. This would be unwise for a

control rod drive mechanism, like that on the AGN-201, that was not

specifically designed for continuous duty. The AGN rod drive motors are

1/25 HP, 115VDC, Shunt motors, rated for intermittent service only,, In

adhering to the specification to avoid changes in the rod actuator
9

a

further consideration is the fact that a power amplifier would be requir-

ed with a continuous control system. The addition of an amplidyne or

other amplification device would require major and expensive changes in

the motor wiring of the reactor. A discontinuous controller does not re-

quire a power amplifier. Amplification is effectively provided through

the action of relays.

Aside from these specific considerations, the desirability of using

a discontinuous contactor type system for the control of nuclear reactors

has been illustrated in the past 16 17 23 . For the reasons des-

cribed above, it was decided to design a discontinuous
9
on-off 3 type con-

trol system.

The analytical approach to the design of a control system has been

described in detail in textbooks on control 9 24 . Working with

the differential equations or transfer function which describes the be-

havior of the plant, the engineer can analytically design a controller to





make a system perform as required. Design methods favoring experi-

mental techniques are also used in control work. After a plant trans-

fer function has been determined or a series of differential equations

devised that apply to the plant, a simulation device can be fashioned

that will behave in a manner similar to the plant which is to be con-

trolled. The actual equipment of the proposed control system can be

operated with the simulation device and direct evaluation of the ability

of the system to meet the design specification can be made. System para-

meter changes can be readily tested with the simulation thereby simplify-

ing the optimization of the control system design.

In the investigation at hand, there were several factors which tend-

ed to favor the experimental approach to the design problem. The time

behavior of a nuclear reactor is nonlinear. That is, one of the seven

differential equations which describe the kinetic behavior of a reactor

contains a nonlinear term. In Section 3, Reactor kinetic equations,

equation (2) shows the product of the multiplication factor, k ff
and

neutron density., n. Neutron density is dependent upon k . A trans-

fer function
s
by definition, describes linear behavior. If a system is

to be treated by analytical methods using transfer functions, it must be

made linear. Using small signal techniques, the reactor equations can

be made linear and a transfer function obtained [2] The result is a

seventh order polynomial which describes the behavior of the reactor

reasonably well under conditions of small disturbances 23 . For

large disturbances, the linear approximation introduces gross errors in

the time response. No approximations of this type are necessary in a

plant simulation. Specifically, an electronic representation of the





differential equations of a nuclear reactor can easily handle the non-

linear term described above by the use of a function multiplier.

The choice of a discontinuous type controller also influences the

design approach to be used. Describing function techniques can fee used

to approximate relay behavior in order that linear design methods may be

applied to the problem 17 23 . However s
the method based on

describing functions provides little information about transient behavior

10 Phase plane analysis has been applied to the design of nonlinear

systems but its application is limited s for computational reasons., to

second order systems 25 Using a simulated control system or the

actual control system itself in a closed loop with the plant simulation,,

eliminates the necessity of the above approximations and offers the de-

signer a direct
s
accurate measurement of the behavior of the actual con-

trol system.

Fig. 1 shows two inputs to the system^ n and dk . In the analysis

of such a system the effect of more than one input on the system behavior

is determined by considering the effect of each input separately and then

applying the principle of superposition. 9 . This approach presumes

prior application of linearization approximations to a non-linear problem.

With an e xperimental design approach,, using a plant simulation,, no serious

problems are posed by a variety of inputs.

To avoid the approximations described above and to keep the complex-

ity of the design problem at a minimum^ it was decided to apply the simu-

lation approach to the design. Specifically,, the differential equations

describing the kinetic behavior of the AGN-201 were programmed on the elec-

tronic analog computer and the computer simulation was used as a design

6





tool in choosing and optimizing the components for a control system.

In order to have reasonable assurance that the simulation accurate-

ly represented the actual behavior of the AGN-201 9
two methods of check-

ing the simulation were used;, comparison with a digital solution of the

reactor kinetic equations,, and comparison with the actual behavior of the

reactor itself. One might presume that comparison with the reactor would

be sufficient proof of the validity of the simulation. Unfortunately

exact comparison was not possible for several reasons. One reason was

related to the problem of applying a true step input of reactivity. How-

ever, a reasonable "forced fit' 1

,, described in Section 4
S
was made and the

accuracy of the analog simulation was established.

Utilization of a device that simulated the reactor behavior offered

several advantages to the designer over the use of the reactor itself.

Foremost was the lack of problems of nuclear safety. The nuclear chain

reaction requires constant supervision and control. Many control devices,,

if used improperly
9 go into a saturated condition or damage a readily re

placable component. A nuclear reactor however 9
if allowed to get out of

control , presents radiological safety hazards to personnel and can do

costly damage to itself. A second advantage of a simulated reactor is

ease of operation. An analog computer can be stopped s reset and restart-

ed without delay. A nuclear reactor,, on the other hand
9
requires elabor-

ate checkout procedures prior to starting and requires a considerable

amount of time to shut down or return to a stable power level for a new

run. After the initial set-up is accomplished;, an analog computer can be

operated repeatedly without any delay other than for the setting of a

potentiometer or changing some other controller parameter for a new run.





3. Reactor Kinetic Equations.

The nuclear reactor kinetic equations used in this report are de-

rived in this section. The developed equations are shown here;

da- h r ('-e) b/t +gp-*,)-r
]

(2)

dt x L r J
-B*T^> U

+ 75 e ^ ft ^ c

d-b - ^T I f e-
B2Tp

J
A

*
c '

i = l s 2, 3. . . .6

For definitions of the terms used
s

the reader is referred to the

Table of Symbols and Abbreviations
s
page v.

The above equations are simply the expressions describing the time

behavior of the thermal neutrons in the reactor. These expressions can

be derived by considering the sources (production) and sinks (losses) of

thermal neutrons. Thus, in equation form, per unit volume

,

Rate of change of neutron density = Rate of production -

Rate of losses.

The two sources of thermal neutrons are the prompt and delayed neu-

trons that have been slowed down. Also there are two general processes

1
causing loss of neutrons in a reactor^ absorption and leakage . We may

Absorption refers to the nuclear reaction whereby a neutron is

captured by the nucleus of some material present. Some of the captures
result in fission, others produce gamma rays or other non-productive
results. Leakage refers to the escape of neutrons from the reactor
system without reacting with (being captured by) a nucleus.





now write

dn/dt S + S J - LR - AR
p d

where

S «= production rate from prompt neutrons

S, = production rate from delayed neutrons

LR = leakage rate of neutrons

AR * absorption rate of neutrons

The four terms will be described. Rather than starting from first prin-

ciples, it will be assumed that the reader is familiar with the funda-

mentals of reactor theory as contained in the textbook by Glasstone &

Edlund 14 • This reference should be consulted for more detailed

information. From reactor theory s the neutron behavior is both time and

space dependent. The space- independent form of the expressions will be

used. Therefore we will concern ourselves only with the time varying

aspects of the quantities. The production rate from prompt neutrons is

given by the expression^

S
P

= (i-ft fc^ifa. e"
P

cf>

The production rate from delayed neutrons is
s

- -pc z &x*c;
A* *

where oH is the delayed neutron effectiveness and is defined by the ex-

pression _ b1 tj;

ft = C
p &

L T
F See Appendix A

We note that p. = p since the delayed neutrons are emitted at energies

238
above the major resonances of U

The leakage and absorption rates for the neutrons are
9





LR = — D V*~$

AR= ^(\>

The combined equation becomes

(i)

This equation can be arranged in a more useful form by applying the

following definitions
J

14 .

L — -*°

£) _ , ixL (this follows from space -
/j _ , 2. j n.Liii.s Loiiowss uum space

/. — ~2
\/ fy

= ^ r independence assumption)

^ =_ k~c BTp
r

See Appendix A
/ + L^B 2

Substitution of these expressions into eq„ (1) and simplifying

d€ - J

Equation (2) contains seven unknowns,, the six delayed neutron pre-

cursors (the G.'s) and the neutron density (n) , Six more equations are
i

obtained from the rates of change of the precursors. In equation foraij,

dC./dt = Production Rate - Decay Rate

i as l s
2

S ...6

or,

4CI~ = ^ €^<j> -hex o)

10





Making substitutions similar to those made in eq. (l) s

4Ci - fcUl *-( ! ... > -\:Ca.
W

« " ~r~ i l-pe- eT> )

has a value of 1.0009 for U with q~ 1.14 and will be approxi-

mated by unity in all further expressions.

The seven equations made up of (2) and (4) are the kinetic equations

of the nuclear reactor. These equations will be used in Section 4 in

setting up the analog computer solution and in programming the digital

solution.

11





4. Simulation of the Nuclear Reactor.

The actual design and testing of components of the flux controller

was accomplished using an analog computer simulation of the kinetic

equations of the AGN-201. Appendix B contains details of the analog

computer set-up.

The computer used was a Donner Model 3100 s
containing 30 amplifiers

11 I . A Donner Model 3735 electronic multiplier was used to obtain the

product of the two time-varying quantities mentioned in Section 2. The

3100 has 15 amplifiers suitable for use as integrators or as summer-

inverters and 15 amplifiers which can be used as summer- inverters only.

40 ten-turn helipot potentiometers, four of which are ungrounded, are in-

cluded in the computer.

The solution used in this investigation required 11 integrators, 15

summer- inverters and 39 potentiometers. See Schematic Drawing in Appen-

dix B.

Two programming problems, relating to magnitude sealing, made the

resulting computer set-up rather intricate and unwieldly. First of all,

the use of an inherently drift-prone electronic multiplier required

special effort to arrange scaling of the problem so that the input volt-

ages to the multiplier were as near as practicable to the maximum allow-

able of 100V. This technique, including the division of the multiplier

output by a large factor before using it in the rest of the solution,

eliminated the problem of multiplier drift from practical consideration.

Secondly, the wide differences between the coefficients of the different-

ial equations required some very small potentiometer settings. In order

to achieve maximum accuracy of simulation, additional fractional inverters

(amplifiers 18 and 19, for example) were used to avoid potentiometer

12





settings near the extreme limits of arm travel.

The scaling requirements mentioned above resulted in a limitation

of the time duration for a computer run. When the analog was operated

by itself without any controlling action being applied to it s
overload-

ing of several amplifiers occurred after 20 to 30 seconds, depending upon

the magnitude of the step disturbance used. This was not a serious limita-

tion since the solution was not permitted to stray far from equilibrium

when the analog was placed in closed-loop operation with the controller.

The computer equations used were derived from the kinetic equations

previously developed. Reference 3 was used as a guide in this work. From

Section 3, the kinetic equations are:

t ~- ffW'-f)*^ -*•)-']
-B7 Tp ,

c

i = 1,2,., .6 '
- '

At the steady-state equilibrium condition,

$£ = O 5 ^=1 J a= C* (o)
, h = h(o)

A (z^J^rp ) - Xx Ca(o)

(2)

(4)

Equation (4) then becomes,

Thus,

c^)^{j^Tfe-^^o)Zpe-*Trjm»J

The coefficients in eq. (2) and (4) differ widely in magnitude, thus it

is convenient to redefine the variables as follows,

13





C CciV} (6)

a/- = kk — ( ^4j ~~
j
) (dollar units)

Substituting (5) and (6) into (2) and (4) yields

(4
1

The normalized n and C can be written in the following forms,

( Foo-t no+« 2) (7)

Ci, = / -+A<U,

By using this form, it is possible to operate only on the non-equilib-

rium portion of the variables. This further reduces the effect of any

multiplier drift. Note that

dn , _ 4_^J2'
dt <d-fc

and ^ ^,dC <d^£*. -

sir <**
The substitution of (7) into (2') and (4') yields

? ^
(,

(2")

4AC, - X; B$fe, + A^An,^, + A<4n. <
4 "'>

— X< ACa;

We are using here the approximation that reactivity, dk, is equal
to (k ff-l). The precise definition is (k

ff
-l)/k . The maximum error

caused by this approximation is less than 1% when k ff
~ 1.0064, at prompt

critical.
2
AY\> and ACxi are variational changes of the normalized quantities

from unity.

14





(8)

Machine voltage representation of the variables is computed by using

conventional scaling factors. The prime denotes machine voltages,

££, - e fit,

The final form of the kinetic equations suitable for direct simulation

on an electronic analog computer is

-]>]a>i: + [-^-J^'fte/AC-

The following scaling factors were found convenient for this applica-

tion,

a = 1 volt/sec.

b = 10 volts/normalized neutro*. density.

g . - g = 100 volts/normalized precursor density

e = 20 volts/dollar reactivity.

Because the An, and AC^, form of the variables was used
9

the initial

conditions were zero for all the integrators.

The conventional transfer function for a motor driven device is

J _
c/^T +\\ • Where j^y\ represents the time constant of the device. Since

equipment was not available for measuring f^ and since the rods on the

15





AGN are small and are driven through a high gear ratio,, an estimated

value of 0.1 was assigned to /a^ . It was known that the control rod

was operating on the linear portion of the rod calibration (reactivity

vs rod position) curve. See Appendix B for details of the rod simula-

tion. Using the measured speed of travel and knowing the linear worth

of the rods, the reactivity rate of the two control rods was determined.

Fine Control Rod ak /sec.
R

-4
Slow Speed 0.282 x 10

-4
Fast Speed 0.860 x 10

Coarse Control Rod

Slow Speed 1.71 x 10' 4

-4
Fast Speed 2.90 x 10

The computer scaled quantity becomes

Two checks were made on the accuracy of simulation. Since the

design of the control system was based on the performance of the system

with the analog simulation, every effort was made to achieve a simulation

that accurately duplicated the reactor behavior. One check consisted of

comparison of the analog solution with a digital computer solution of the

time response of a nuclear reactor. The other check consisted of fitting

the analog solution to the actual measured behavior of the reactor it-

self. A description of the latter check procedure is given later in this

section.

With regard to the digital computer check method
s Cohn and Toppel

of the Argonne National Laboratory devised a code for the IBM- 704 which

calculated reactor behavior following a step change in reactivity 5 „

With some minor modifications, the code was found suitable for the

16





Control Data Corporation 1604 Computer.

The code is a FORTRAN program which solves the Inhour Equation

for its roots by an iterative process. A LaPlace Transformation approach

was used in setting up the solution. The Inhour Equation roots were

then used to obtain a time solution for normalized neutron population 9

by means of the relationship; uj't.

jjg. *<**) e

where A, and B, depend upon the magnitude of the step reactivity dis-

turbance, the inhour roots, U>j
s
and the magnitude of the extraneous neu-

tron source. They are separated in the solution for ease of computation.

C depends upon the reactivity step and the neutron source only. The time

intervals need not be regular and were left to the choice of the program-

mer. See Appendix A for a discussion of the manner in which the delayed

neutron effectiveness was included in this calculation.

The code presumes equilibrium of the delayed neutron emitters be-

fore the introduction of the reactivity step. A second code, devised by

the same authors, permits consideration of the case where equilibrium has

not been achieved.

As mentioned above
s the program makes provisions for including the

effect of an extraneous neutron source. The AGN-201 does have a Ra-Be

source for start-up purposes. When this provision is used
9

the effect of

the source is put in as an initial negative excess reactivity. With a

source of neutrons present in a reactor, constant neutron population

does not indicate criticality (zero excess reactivity). On the contrary,

the reactor is subcritical by a small amount; k _. is less than unity and
eff

the difficiency of neutrons is made up by the source. A convenient way

17





of expressing this lack of criticality is to assume an initial value of

negative excess reactivity.

It was decided to exclude the source from consideration in this and

other kinetic equation solutions because of the difficulty of determining

an accurate value for its effect. To check on the error introduced by

neglecting the external source term
9
an experiment was conducted. Criti-

cal rod settings were compared for two conditions; criticality at 1 watt

with the source in its usual location and criticality at 1 watt with the

source removed from the reactor. The difference in the two settings was

so small that the experiment could not be reporduced accurately enough

to detect it.

Input data for the code includes;

Clrfo source effect (excluded in this analysis)

( ° step reactivity

X prompt neutron lifetime y_, . , ..
«"* r r (The symbols are those

z\x delayed neutron decay constants used in Reference 5)

R/t delayed neutron fractions

time intervals

Figure 2 is a comparison of the analog time response with that obtain-

-4
ed from the digital computer. A reactivity step disturbance of 10 x 10

reactivity units and a delayed neutron effectiveness of 1.14 were used in

both solutions. The initial responses of the two solutions compare very

well but differences appear at longer times. See Appendix A for an ex-

planation for this behavior.

Two modifications to the analog simulation were necessary in order

to compare its performance with the AGN-201 reactor. The first modifica-

tion concerned the simulation of the actual reactivity disturbance of the

18
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reactor. The reactor was disturbed by inserting a rod filled

ethylene into the glory hole. The rod was pushed in by hand
9
and it

was acknowledged that this resulted in a fast ramp input of finite rise

time rather than a true step input. If the analog simulation was to be

compared accurately with the reactor then it was necessary to disturb

the analog with a fast ramp in a manner duplicating the reactor input.

This was accomplished using a ramp generator.

The second modification was made necessary by the fact that the

neutron detection system used in measuring the output of the reactor

contained a noise filter consisting of a shunting capacitor and an input

resistor to the amplifier. See Appendix C. This RC filter produced an

additional time delay in the observation of the response of the reactor.

The circuit components selected produced a time constant of 0.05 seconds.

This filter was duplicated by a lag transfer function simulator. Fig.

3 shows the components added to the reactor simulation in order to make

it comparable with the AGN-201.

REACTOR
KlNETI C

EQUATIONS

RAMP
Generator

FILTER

SIMULATION

OUTPUT
^- y

Fig. 3 Modification of analog computer to

permit comparison with reactor
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Details of the ramp generator and the filter simulation are contain-

ed in Appendix B.

For comparison purposes
3

a recording was made of the AGN-2Q1 reactor

output, following the insertion of a fast ramp- reactivity disturbance.

Without changing control rod settings the time required for the reactor

flux to increase by a factor of 10 was recorded. From this informations

the reactor period was computed using the relationship between flux change

and period. j ^ -==

With & =10, the period was computed from,

-r- — - jL

The reactivity was computed using the Inhour Equation solution for the

-4
AGN-201. A value of 15 x 10 was calculated. At the time this measure-

ment was made it was recognized that this value of reactivity was too hig!

The period measurements were made soon after the initial fast-changing

behavior of the reactor died out and the flux had settled down on an

approximate exponential rise. By so doing the period was measured before

all delayed neutron effects had disappeared. The resulting value of

period was too low. The Inhour Equation then
s
gave a value of reactivity

1
that was too high . Measurements were made in this manner to avoid the

effect of the negative temperature coefficient of the reactor. It takes

one or two reactor periods for all the delayed neutron effects to die out

after a step disturbance and the reactor to settle on a true asymptotic

period. In this length of time the reactor power would have risen high

In the Inhour Equation, reactivity is related to reactor period in
an inverse manner. See reference (14).
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enough so that the negative temperature coefficient would be introducing

negative reactivity. The amount of reactivity introduced would be

varying with time and attempts to compensate for it in subsequent calcu-

lations would be very difficult. It was decided to use the value of

reactivity obtained in the above manner as an initial disturbance for

the analog computer with the understanding that it could be legitimately

reduced to obtain close agreement between the analog run and the actual

reactor behavior.

-4
On the analog computer, the value of 15 x 10 was used as a re-

I
activity disturbance. Curves for reactivity rise times of 0.1 9 0.2 S

0.5
S
and 1.0 seconds were obtained. These are plotted as curves one

through four in Figure 4. Curve five represents the measured reactor be-

havior. It was decided that a rise time of 0.2 seconds best matched the

reactor at low values of time. In an effort to achieve more exact match-

ing of behavior, the reactivity input to the analog was reduced. At a

-4
value of 14.0 x 10 excellent agreement was obtained. This final curve

was so close to other curves that it was difficult to plot. Instead

isolated points are shown as crosses.

By comparison of reactivity obtained by period measurements with that

obtained from critical rod settings
s
and from other theoretical considera-

tions, it was estimated that the values of reactivity obtained from the

reactor may be in error by as much as 3%. This does not account for the

total difference shown above. It is known that (y s the delayed neutron

Rise time as used here refers to the time between start of insertion
of the reactivity disturbance and when the full value has been applied to

the reactor. See Appendix B.
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effectiveness, has a sizeable effect on the behavior of a reactor at long

times (after the initial fast rise). It is felt that this parameter,

which was obtained unverified from Aerojet-General data, may be in error

enough to account for much of the difference between the analog and re-

actor behavior.

While the above comparison was not analytically precise,, it did lenc

strength to the assertion that the analog computer simulation represented

the behavior of the AGN-201 with reasonable accuracy. Admittedly
s

the fc

agreement was produced by a "forced fit". The adjustment of the para-

meters (rise time and reactivity) was logical,, however^ and was made in

a direction permitted by theoretical considerations.

Having established the accuracy of the analog simulation,, it was

then used as a tool for designing and testing the automatic control

system. This was accomplished by connecting the controller between ampli-

fiers 9 and 10 as shown in Fig. 10 k
Appendix B. The output of amplifier

9 was applied to the control grids of tube 1 of both the UP and DOWN

trigger circuits in place of V shown in Fig. ll
s
Appendix C. The re

O

K24 and K25 were used to operate the relay contacts shown at the input

of amplifier 10.
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5. Description of the Control System.

Figure 5 is a block diagram of the control system. A more detailed

schematic diagram can be found in Appendix C.

Powttf
Reference

Com pari so/j

NETWORK
ERROR

FiLTae

AM PURER

A

COfiJTACTOe.

AMPL/f=IG£
-1-
OVEKRlOE

REACTOR

/veuT/zofj

OETBCTOR

C3

MA/JUbL

CotJTfcOL

Fig. 5 Block Diagram of AFC System

The neutron detector produces an output proportional to the neutron

flux of the reactor. Flux, in turn, is directly proportional to reactor

power. The output of the detector is filtered
s
amplified and then fed to

a comparison network where it is compared with a signal representing the

reference power level. That is, the power level at which the AFC system

is to maintain the reactor. If a difference exists between the flux and

the reference signal, an error signal is generated. The contactor ampli-

fier samples the error for size and polarity. If the error exceeds &

given size the amplifier causes the rod drive mechanism to move the con-

trol rod in the appropriate direction to reduce the error signal. Since

25





the control system is a discontinuous type
s
an error signal may exist at

all times if it is small enough. As long as the error stays within a

designated "dead band" no control rod movement takes place. The AFC

system forms a rod controlling mechanism in parallel with the manual con-

trols of the reactor. An override is provided so that the reactor opera-

tor may disconnect the AFC system simply by manipulating the reactor con-

trol console switch for either of the control rods. The system compon-

ents are described in more detail in the following paragraphs.

Nautron Detector and Signal Amplifier

A gamma-ray-compensated ionization chamber filled with boron tri-

fluoride gas was located in one of the access ports of the ACN-201. It

was supplied with a positive voltage of 250 VDC and a negative voltage of

160 VDC for compensation from an existing power supply of the reactor,,

-9
Since the signal from the chamber was of the order of 10 ' amperes

s
the

power supply cables and the cable returning the chamber signal were

shielded throughout to reduce noise pick-up. The chamber signal was fed

into a filter system consisting of a 0.1 Ui capacitor and a 0.5 megohm re-

sistor (1 megohm in parallel with the 1 megohm internal input resistance

of the amplifier).

The components of this filter were chosen from noise considerations

and by trial on the actual equipment. Reference 27 is an examination

of the noise problems encountered in reactor instrumentation systems.

It was felt that the lowest frequence of consistent noise would be 60

cycles. An initial estimate of filter parameters was made by assuming

a 40 db attenuation of 60 cycle noise. A Bode plot gave a time constant

of 0.267 sec. (breakpoint frequency of 3.75 rad./sec.) In order to reduce
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the time delay of signal changes
9
the time constant was decreased experi-

mentally by decreasing the capacitor and resistor values with th :ron

chamber and a recorder in operation, A satisfactory arrangement was

achieved at a time constant of 0,05 sec, (Breakpoint frequency of 20

rad./sec.) This value of time constant had a minor effect upon chamber

signal changes but still accomplished adequate noise filtering. This

value might have been decreased still further,, but at 0.01 seconds too

much noise was being passed. No further effort was made toward finding

optimum filter parameters.

Amplification of the chamber signal was accomplished using a low-

drift, high-gain amplifier. Brush Model BL-550.

Comparison Network

Discounting the complicated initial behavior of a reactor immediate-

ly after a step reactivity disturbance
s
the reactor response,, after a

sufficiently long period of time, is basically of the exponential type

characterized by the equation /

ft = n e t"
(i4)

We have seen that the reactor period, T s
is related in an inverse manner

to reactivity through the Inhour Equation.

For a given reactivity disturbance;, n/n is the same value,, at any given

time
s
regardless of the power level at which the disturbance occurred.

In reactor control, error determination is not a matter of subtract i.-.a; *

reference value from a measured quantity. Rather it is the division of

the measured quantity by the reference and the determination of the devia-

tion of this normalized quantity from unity, Tht
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A comparison network was chosen that would perform this division by ts
c

and would permit n to be varied according to the power level desired,

3

J
23 . Referring to Fig. 6

S

V
3
-

V,

R
by the principle of voltage division, provided the current to the trigger

circuit grids is kept very small.

Vh(-firovn 2>h^piw«0

R

^h-r

st&O

To GRIDS OF

\Ja TRIGGER. CtZCUITS

Fig. 6 Comparison Network

It is convenient for the circuitry that follows (Triggei circuits)

to have V represent a base voltage plus an error. A base voltage of

10 volts was chosen.

Vq - lo + Ve
then

vh
Ve = Vq - to - J^Tro 10

i + ?Wr
Let V j,

the reference voltage
9
equal 10{1 + PD/R;

S,
then,

o

io
Vo
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If V represents n„ and V represents n s then the output error volt-
n o o

age Is of the required form .

The value of P/R was chosen to be 2. The output voltage^ 7 s
then be-

o

comes 10 volts plus or minus an error proportional to /\n/n . The
o

potentiometer setting, D s becomes the variable parameter that determines

V , the reference voltage representing the desired power leva!.
o

Vo = io(/+SD)

This analysis presumes that V never goes below 10 volts or above 30 volts
n

(D = 1 gives V = 30 volts). This was easily arranged by the scale changes

on the amplifier.

Contactor Amplifier

Two Schmitt Trigger Circuits arranged as shown in Fig. ll v
Appendix

C operate relays and perform the function of measuring the error and initi-

ating control rod movement when required trigger circuit

,

shown in Fig. 7., is a network with two stable operating conditions? one

1

when V is below the voltage of the grid of tube 2
S
the second «

g 8

is above grid of tube 2. As V increases and approaches the voltage of

the grid of tube 2
S
tube 1 is cut off 9 R5 having been chosen so that the

cathode voltage is high enough to permit this action. Tube 2 is above

cutoff and is conducting. The relay is in the energized condition. As

V approaches a value slightly below cathode voltage
s
tube 1 begins to

conduct a small amount. This reduces the voltage at the plate of Tl and 9

through voltage divider action, reduces the grid voltage of T2. Ihis

action starts to cut off T2 which reduces voltage across R5. As a

1
The term grid refers to the control grid

a
in this report.
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RELAY

TO COKlTfcOL
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Fig. 7 Schmitt Trigger Circuit

result the cathode to grid voltage of Tl reduces and the cycle repeats

itself. The action is cumulative and the trigger changes to the new

stable condition with Tl conducting and T2 cut off
9
thereby de-energizing

the relay. R5 and R4 are chosen so that the trigger point is just at;

10 volts and so that the trigger action is as sharp as possible. Rl and

R2 are chosen by plate current considerations and R3 was determined by

voltage division requirements. E, , was approximately 150 volts. The
bo

resulting effect is that when V rises a small amount above 10 volts the
g

relay changes condition (de-energizes). This relay action car be used to

start control rod motion in such a direction that V returns to 10 volts.
g

A second circuit , operating above the trigger point can be used to detect

negative error. In this case
s

as V goes below 10 volts tube 2 starts to
g

conduct and the relay energizes. The two relays
9
one responding to

positive error, the other to negative error are used to close switches

in the power supply circuit of the control rod drive motor to move the
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rod in the required direction. Figure 12, Appendix C shows the coninec-

tions to the existing AGN-201 motor control circuits.
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6. Performance of the Control System.

When installed on the AGN-201, the automatic control system proved

to be a simple, effective device which met most of the design criteria.

The requirement that accuracy of control be within IX proved to be un-

realistic for a discontinuous system of this type on this reactor. The

difficulty was not so much in the inability of the system to respond with

the necessary sensitivity but rather in the achievement of a proper com-

promise between accuracy and control rod movement. When an attempt was

made to reduce the controller dead band to IX either side of the desired

power level, the control rod remained in virtually continuous operation.

The resulting wear on the mechanical parts and the heating of the motor

by continual starting was felt to be unacceptable. By widening the dead

band to about x: 3X satisfactory operation was achieved.

Fig. 8 shows a. comparison of the analog simulation performance with

the performance of the AGN-201 under essentially the same conditions

(same reactivity disturbance and rod correction rate). A step (fast ramp)

-4
reactivity disturbance of about 10 x 10 units was used. A control rod

-4
correction rate of 0.860 x 10 units/sec, from the fine vod^ fast speed

8

was used in the reactor and was simulated on the analog computer. For

purposes of comparison, the following two standards for measuring per-

formance are defined;

Delay Time - The elapsed time between insertion of
disturbance and the time when the curve

first returns to the dead

Maximum Power Rise - The normalized rise of neutron flux. That

is, the peak value divided by the initial

value.
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Curve (a), from the analog computer, shows normalized neutron density

(n/n ) . The initial value is unity. A delay time of 18 seconds and a

maximum power rise of 1.23 was observed. The reactor behavior
9
curve

shows 15 seconds and 1.25 for these quantities. The dead band in curve

(a) extends from line 16 to line 18. In Curve (b) it is readily notic-

able. The oscillations in the reactor behavior and the lack of them in

the analog curve points out an interesting fact observed in this study.

It was found that it was not possible to duplicate the behavior of the

analog trace within the dead band. While the analog behavior from one run

to another was generally the same, small differences in the mechanical

action of the relays in subsequent runs made the oscillations uneven

and different from run to run. In some cases (curve (a) is an example)

the relay action was such that the trace returned to the dead band and

remained relatively level for a long period of time before control rod

action was called for. During other runs, the analog remained in oscilla-

tion as the reactor did in curve (b). By the same token
9

in some of the

reactor runs, the flux entered the dead band in such a manner that no

oscillations occurred for a time. This was probably due to fortuitous

action of the relay and some coasting of the rod after the control circuit

was opened, with the result that the reactor was left very close to crit-

icality when the controller action stopped. Whenever this happens it is

by chance since the on-off action of the controller is not expected to

provide exactly the correct amount of reactivity correction.

The small differences between the two curves, as well as all differ-

ences observed between the analog computer and the reactor during this

study can be attributed to uncertainties and inaccuracies in several
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quantities. They are summarized below.

1. Uncertainties in the amount of reactivity disturbance used

in the reactor.

2. The estimation of the control rod drive mechanism time

constants.

3. The estimation, done by forced fit 3 of the rise time of

reactivity into the reactor.

4. The use of 1.14 for with no precise knowledge of

derivation of that quantity and thus its accuracy.

5. Uncertainty in the value of neutron lifetime in this

reactor.

6. The inaccuracies inherent in any simulation. The fact

that the behavior of a reactor is represented by a set of

differential equations is a mathematic approximation, or

model, of a physical system.

In the light of the above known limitations^ it is felt that ex-

cellent agreement was achieved between predicted reactor behavior 2 d

the performance of the reactor. The design procedure employed in this

investigation appears to be an accurate and practical experiment

method of designing control systems.

Fig. 9 curves were obtained from a recorder attached to one of the

neutron channels of the AGN-201. Fig. 9(a) shows the behavior of

-4
reactor when a reactivity correction rate of 0.282 x 10 was employed

(fine rod, slow speed). This run was made at 0.1 watts. Note t

typical behavior of a discontinuous control system before and after the

disturbance. The set power level of 0.1 watts is located on the arbiti
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scale at about 23. The dead band extends from 22 to 24. This curve

shows a delay time of 50 seconds and a maximum power rise of 1.47.

Curve (b) , taken at 1 watt with the same input shews better performance

of the control system. In this run, fine rod, fast speed was used in-

itially, to obtain fast error correction, then the rod speed was manual-

ly shifted to slow after about 70 seconds to reduce the oscillation of

the reactor within the dead band. Curve (b) was the best performance of

the control system observed during this investigation. Note that the

dead band is about the same percentage of the reference level in the two

cases. A scale change has occurred on the neutron channel between the

two curves. In curve (a) the dead band is about 0.008 watts, which re-

presents 8% of the reference, 0,1 watts. In curve (b) the dead band is

about 0.06 watts, which is 6% of the reference, 1 watt. The closeness

of these two percentages indicated the successful division by n discuss-

ed in Section 5 in regard to the design of the comparison network. The

slightly smaller value for curve (b) can be attributed to the reduced

noise level at 1 watt operation. The signal in curve (a), for 0,1 watts,

is comparatively noisy so the curve appears to have a larger dead band.
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7. Improvement of the Control System.

The major difficulty experienced in the operation of the control

system was in the adjustment of the trigger circuits employed to actuate

the relays. Referring to Fig. 11, Appendix C, the interaction between

R4 and R5 in achieving fast trigger action and low hysteresis is diffi-

cult to define precisely. The circuit parameters were chosen largely by

trial. While satisfactory performance was achieved and the circuits were

stable once adjustments were made, the adjusting procedure was time con-

suming and had to be made before each series of runs.

It is felt that more investigation is necessary into the behavior of

the Schmitt Trigger Circuit in order to improve its performance in an

application such as that made in this work. No reference was found, for

example, on the effect of an inductive loading, such as the control re-

lays, in the plate circuit of tube 2 of the trigger.

Further investigation may show the desirability of using variable

control rod drive, possibly adjusted by tachometer feedback. There are

other controls that could be added to make control action smoother and

more precise. The addition of these devices must be weighed against cost

and additional complexity. This is particularly true when the control

system is for a low power, low cost research reactor such as the AGN-201,

Hysteresis refers to the fact that trigger action does not occur
at the same value of V when the signal is increasing as it does when
the signal is decreasing.
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APPENDIX A

DELAYED NEUTRON EFFECTIVENESS

235The delayed neutrons produced in the fission of U are emitted

with an average energy of 0.515 MEV 8 I . The prompt neutrons, on

the other hand, have an average energy of about 2 MEV at emission.

Due to their lower energy, the delayed neutrons are less likely to leak

out of the reactor during the slowing down process. This "less liklihood

of leaking out" can be expressed as an increased effectiveness of the

delayed neutrons in producing fissions. A greater percentage of the

delayed neutrons will reach thermal energy and cause further fissions

than will their prompt counterparts. This is the reason for including

a parameter of this type in reactor kinetic investigations.

The average delayed neutron effectiveness c — -5- Z k*~
* /

)

1
is usually greater than unity . In small, water-moderated reactors,

this parameter may exceed unity by as much as 257D 12 . In work of

low precision, its value is usually taken as one. Actually, there is

an effectiveness for each of the delayed neutron groups. The individual

values are difficult to determine, however, so an average quant ity s
for

the aggregate, is generally used.

The method of including Q in kinetic equations varies, superficially,

in the literature. The fundamental approach, however, is the same.

Handler 15 defines
ft

mathematically as shown in Section 3. To be

consistent, he also redefines k -- to account for the different behavior
' ef f

Keepin [l9j states that the parameter may be less than unity in

a fast Pu - metal reactor.
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of the prompt and delayed neutrons. Gwin 22 has a similar express-

ion for k ...
ef f

k
eff

= 0-^t^p^pt + 4, ^ ^^i,i(6c\^6)

m
/ +L*-B*

Ic.

let n it„ ,x,
s/nce Icoo-lc^.

then / x?~ ^ r „

This method of accounting for is entirely equivalent to those found

in the literature I

6J |26j . They all lead to the same time behavior

of thermal neutrons in a reactor. This investigator has chosen to in-

corporate the effect of delayed neutrons in the manner shown in Section

3. This approach permits a logical, mathematical development of the para-

meter Q . In the digital computer solution, it was convenient to use

a modifying factor for n as did Goertzel 26 because of the particular

form of the mathematical expressions used and because the FORTRAN code

could be most easily modified by changing the jp values. In accounting

for delayed neutron effectiveness by the method of modifying P , some

other changes in the kinetic equations are also required in order to

make the equations agree mathematically with the Handler development.

Unfortunately, without making major modifications in the code, these

changes could not be included. This is the reason that the two curves

of Fig. 2 show large differences at long time values. The digital solu-

tion does not accurately include the effects of delayed neutrons, and
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thus is assumed to be in error. The direction of the error is not known.

The digital solution does provide an approximate comparison for the

analog for purposes of checking the accuracy of simulation, particularly

at low time values.
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APPENDIX B

ANALOG COMPUTER PARAMETERS

Mathematical
Pot Expression Value Pot Setting

<

Amplifier R input Feedbacl

1
A,

a .0124 .0124 1 1 M l/*f

2
a

.0305 .0305 2 1 M UAf

3 X 3

a.
.1114 .1114 3 1 M iMf

4 .3013 .3013 4 1 M l/*.f

5 As 1.136 .1136 5 0.1 M 1/tAt

6 Ac 3.013 .3013 6 0.1 M \AM

7

9$
.00374 .0374 11 1 M 0.1 M

8
9£

.02480 .2480 11 1 M 0.1 M

9 UL&2
5 *

.02235 .2235 11 1 M 0.1 M

10
5 £

.04490 .4490 12 1 M 0.1 M

11

** *

.01311 .1311 12 1 M 0.1 M

12 .00475 .0475 12 1 M 0.1 M

13 *W*) .0124 .0124 1 1 M y-f

14 ttK*) .0305 .0305 2 1 M \jAi

15 .1114 .1114 3 1 M y*i

16 ild (J-) .3013 .3013 4 1 M i/«f

17 9X5 /±.\ 1.136 .1136 5 0.1 M i^f

18

19

3.013

.0400

.3013

.0400

6

1

0.1 M

1 M

i^f

i/»f

20 .0981 .0981 2 1 M i/*f

21 5Ad <>*) .3580 .3580 3 1 M L**f

22 ^0"») .9685 .9685 4 1 M yui

23 ^ 000) 3.653 .3653 5 0.1 M \JM
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Mathematical
Pot Expression Value Pot Setting Amplifier R input Feedback

24 9n£(\oo) 9.685 .9685 6 0.1 M \Ml
\ ft MUr^r-

25 i*L2.hoo) .0040 .0040 1 1 M \m f
€fl. b ' /

26 ^Ail_(
( oo) .0098 .0098 2 1M L" f

27 9^£ C/oo) .0358 .0358 3 1M \M f

28 thll-(ioo) .0968 .0968 4 1M 1/f

29 ^T (l0o) .3653 .3653 5 1M U, f

30 ^Ak£ (ioo) .9685 .9685 6 1 M l>f
eat. /

31 b(f-e) #4968 >4968 13 x M

32 ^(To) - 1140 -
114 13 1 M

33 !=£ .0497 .0497 13 1 M

34 '9A .0638 .0638 13 1 M

35
-f S"fe

See P8 45

36 <« See pg 45

37 -f <Sr See PS 47

38 ~ € ^ See pg 47

39 ho 10
V

* 10^n,is input to potentiometers

**I00 O'C I s input to potentiometers

***— Zih', ^
(

is input to potentiometers
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PARAMETERS FOR REMAINING AMPLIFIERS

AMPLIFIER
No. USE Input R in Feedback

0.1 M 0.1/<f

1.0 M iMt

0.5 M 0.1/Af

0.5 M

1 M l/*f

1 M 1 M

1 M 1 M

0.1 M 1 M

1 M 1 M

1 M 0.1 M

1 M 0.1 M

1 M 1 M

1 M 1 M

1 M

1 M 1 M

1 M 0.1 M

1 M 0.1 M

1 M 0.1 M

0.1 M 0.1 M

1 M 1 M

8 INT e,

9 LAG in,

10 INT <f r

14 INV 10 Ah,

15 inv loAn!

16 INV £(c,

17 inv £lc!An!

18 inv St, Ah'

19 inv j^lcAn'

20 INV Pot 35

21 SUM gt^

22 INV £(/

23 INV £|c'

24 INV ^ Sic'

25 SUM /oAfi,'

hi

26 LAG j*.,^st:,

O.lAf/
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Ramp Generator

e,—y\A -©- ?3 = ffe,,

^v diode

It is required that the generator input a specified amount of reactivity

in time t seconds.

where
3 *

G 3, MAX = ^ D

The output of integrator 8 becomes,

A - e *
z " a 35 tr

Let the characteristics of the diode be such that with a bias of 6 is

shown, the diode cuts off the integrator output at voltage e (close to

6 ). Then,

2, M£y = £JX
a

- <f

,

•J5

and

We know that

e, = e, r- e D

d, 5 t
Given the values of e , e_ and t, solution for a and e, can be obtained,

c D jj 1

giving the desired reactivity input in the given rise time interval. For

4
t = 0.2 sec. and

has the following shape.

£>k = 10 x 10 ', the output of inverter amplifier 19
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3.11 -

VOLTS

RISE TIME

O 0.1 0.2 0"5 OM 0.5

TIME ( SB COA/Ds)

Filter Simulation

It is desired to simulate the transfer function.

G(s) - on \ , / where R -
PCS -hi

GCs) =__ I C = O.ly^-f
.oss-hi

The following analog computer set up will provide this simulation

thus
Got,

= /

and C* @J _
t OS

do

Let a
1

= 1

a
o

= 1

R
f

= 0. 5 M

R
i

= 0. 5 M

c
f

= 0. lyUf

Cont rol Rod Simulation

Simulation of the rod drive transfer function, »6 B

S(0.!S + l)

accomplished by use of an integrator and a lag transfer function simula-

tion identical to the filter simulation but with different parameters.
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'A

IQ,

R£LAY CONTACTS

R = 1 M

R
f

= 1 M

a = 1
o

C = 0.1/4 -P

Delayed Neutron and Reactor Parameters .

The delayed neutron parameters used in this analysis were those

due to Keepin and others I 20
J

,

A, = 0.0124 S.
- 0.000211

A, = 0.0305 h - 0.00141

A3
= 0.112 \> = 0.00126

A. = 0.301 * * 0.00254

A5
= 1.14 V - 0.00740

A* = 3.01 V = 0.00268

& = 0.00643

The reactor paramet ers were obtained from Aerojet -General 111 and Cooke

H-
J- 4.1 y : 10 sec.

f~ 1.14
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APPENDIX C

AUTOMATIC FLUX CONTROL SYSTEM SCHEMATICS

Figures 11 and 12 are schematics of the trigger circuits and motor

control circuits for the automatic flux control system. The following

notes will aid in their understanding.

A. Fig. 11

1. Resistor values used in this study were:

DOWN and UP

Rl = 2.2 K

R2 = 2.7 K

R3 = 100 K

DOWN

R4 = 9.4 K (adjustable)

R5 = 680 (adjustable)

UP

R4 = 8.2 K (adjustable)

R5 = 400 (adjustable)

E, . = 140 volts
DD

2. K22 and K23 were sensitive relays designed for pull-in

at about 5 ma. The trigger circuits were found to have

best operation with plate current at about 15 ma. The

variable resistor shunting the relays were used to by-

pass the excess current.

3. Being sensitive relays, K22 and K23 had only one set

of contacts. They were used to control relays K24 and

K25 which had the necessary number of contacts to

perform switching in the motor control circuit.
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4. The diodes around K24 and K25 were found necessary to

reduce arcing when these relay coil circuits were

opened.

5. The following adjustment procedure
9 used for a parti-

cular set of tubes, is offered for reference. The

voltages will be different for other tubes.

a. Adjust E.. to 136 volts,
bb

b„ Adjust V to 10,0 volts with external power

supply.

c. DOWN

(1) AdjustR4 until grid, tube 2 reads 10.0

volts.

(2) Adjust R5 until cathode reads 11.6 volts.

d. UP

(1) Adjust R4 until grid 9 tube 2 reads 7.7

volts.

(2) Adjust R5 until cathode reads 10.4

volts.

The above voltages are with respect to - E. . „ at the negative of

the amplifier output.

6. P stands for a 50 K potentiometer, ft is a 25 K

resistor. D refers to the potentiometer setting

(O£D±0»

B. Fig. 12.

1. The wiring additions are those circuits showing con-

tacts from K20 s
K21 s K24 and K25. The other circuits

were original circuits on the AGN-201.
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2. The existing relays have the following function

a. K16 - Energized by lower limit switch, fine

control rod .

b. K17 - upper limit switch

c. K18 - Energizes when a scram occurs in order to

return all rod carriages to the down position.

3. K20 is a small SPDT 6 volts relay

4. K21 is a 6PDT telephone type relay rated at 110 volts.
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